Overblog
Suivre ce blog Administration + Créer mon blog
Le blog de cepheides

Le blog de cepheides

articles de vulgarisation en astronomie et sur la théorie de l'Évolution

Publié le par cepheides
Publié dans : #astronomie

 

 

 big_bang-et-apres.jpg

 

 

 

 

     Le 28 mars 1949, l’astronome anglais de grand renom qu’était Fred Hoyle (1915-2001) s’exprima à la BBC pour fustiger les scientifiques qui pensaient - en se référant aux travaux de l’abbé Lemaitre et du soviétique Alexandre Friedmann évoquant un « noyau originel » - que l’Univers était dynamique. Hoyle, quant à lui, était convaincu que l’Univers était « stationnaire », c'est-à-dire en équilibre parfait, autant de galaxies naissant que disparaissant. Pour qualifier le grotesque supposé de ses contradicteurs, il ironisa (ce qu’il a par la suite toujours nié) sur ce qu’il nomma le « Big bang ». Il ne se doutait certainement pas du succès futur de son appellation...

 

     Aujourd’hui, il est peu d’esprits qui remettent en cause ce fameux Big bang, essentiellement parce que des preuves tangibles de sa validité ont été mises en évidence : notamment la réalité de l’expansion de l’Univers ainsi que la photographie du fonds diffus cosmologique, dernières traces de ce début explosif. Dans un sujet précédent, j’avais cherché à résumer les instants ayant immédiatement succédé à cette explosion de départ (qui, stricto sensu, n’en est d’ailleurs pas une). La science progressant sans cesse, il est à présent possible d’aller un peu plus loin… ou, pour être plus précis, un peu plus avant.

 

 

 

Retour sur le Big bang

 

 

     On trouvera une description plus complète de la théorie dans le sujet qui lui est consacré (voir : Big bang et origine de l’Univers) mais il semble ici utile de revenir sur l’essentiel du processus.

 

     Il y a 13,7 milliards d’années, l’Univers était bien différent : réduit à un point minuscule, il était formidablement dense, chaud et homogène. Cet Univers entra alors dans une phase d’expansion dite explosive ce qui a conduit à une baisse progressive de sa chaleur et de sa densité. Du coup, la matière homogène du début s’est dispersée en se structurant en galaxies riches d’étoiles pour aboutir à ce que nous en savons aujourd’hui. Notons que cette approche théorique ne fut possible que grâce à l’énoncé par Einstein de la théorie de la relativité générale (voir : théorie de la relativité générale) qui postule que l’espace, le temps, la matière et l’énergie sont parfaitement liés : avant ce grand scientifique, il était en effet impossible de considérer l’Univers dans sa totalité. Le Big Bang, une théorie séduisante, donc, car fortement explicative mais quelles en sont les preuves ?

 

     C’est Edwin Hubble (voir : Edwin Hubble, le découvreur) qui apporta hubble.jpgune première réponse en observant les galaxies. Outre le fait qu’il démontrait qu’il existait bien un vaste univers en dehors de notre Voie lactée, il prouva que les galaxies s’éloignent les unes des autres (à l’exception de celles qui sont trop proches et donc liées par la gravitation comme dans notre groupe local) à une vitesse d’autant plus élevée que leur distance est importante; il n’existe alors qu’une seule explication possible, c’est que l’Univers est bel et bien en expansion (et non pas stationnaire comme le pensait Hoyle). Aujourd’hui, d’ailleurs, nous savons que cette expansion n’est pas constante mais qu’elle va en s’accélérant. C’était évidemment un grand pas en avant mais il y eut plus.

 

     En 1965, on découvre par hasard le rayonnement fossile (voir : fonds diffus cosmologique). De quoi s’agit-il ? D’un « bruit de fond » homogène et perçu dans toutes les directions de l’Univers, vestige de son état dense etfond diffus cosmologique chaud du début. En 2003, cette rémanence fut même photographiée par un satellite de la NASA…

 

     Depuis lors, la théorie du Big bang correspond pour les scientifiques à un « modèle de concordance », c'est-à-dire qu’elle est cohérente avec toutes les observations astronomiques dont nous disposons.

 

  

Un mur théorique

 

 

     Pour comprendre le début, on remonte donc le temps. Au départ, pas de problème, l’Univers s’explique parfaitement par la Relativité générale. Le télescope spatial Hubble et son étude « Deep fields » (champs profonds) permettent de remonter très loin, jusqu’aux premières galaxies observables il y a presque 13 milliards d’années. On ira sans doute encore un peu plus loin (ou un peu plus vieux puisque observer les étoiles, c’est voir le passé) mais on se heurtera inéluctablement à un mur infranchissable : le fonds diffus cosmologique (ou rayonnement fossile) concernant les 380 000 premières années de l’Univers, une époque où la lumière ne diffusait pas encore… C’est ici que s’arrête l’astronomie observationnelle.

 

     Les équations, elles, permettent, comme on l’a déjà dit, de continuer notre exploration de ce passé si lointain… jusqu’à un certain point toutefois : la toute première seconde après le Big bang ou, pour être tout à fait précis, 10-43 seconde après, un instant appelé le temps de Planck. Avant, eh bien, on peut rien dire et cela pour une raison simple : les équations sont muettes. Ou plutôt, elles sont ininterprétables puisqu’elles prévoient une température et une densité infinies alors que le temps a disparu : difficile à concevoir ! Cela ne peut signifier qu’une chose : notre outil mathématique n’est pas adapté. En effet, jusqu’à cette limite, on utilisait les équations de la Relativité générale mais, à 10-43 seconde, l’Univers est si petit qu’il faudrait se servir des équations de la mécanique quantique or il existe un écueil de taille : relativité générale et physique quantique sont strictement incompatibles. De ce fait, on ne sait pas ce que pourrait être ce temps 0, ni même s’il existe. Les scientifiques parlent de « singularité » témoignant ainsi de notre incapacité à l’étudier. Est-ce à dire que le questionnement s’arrête là ? Eh bien, non, car, grâce à d’autres équations, on peut imaginer plusieurs scénarios possibles.

  

 

Avant le big bang : les scénarios possibles

 

 

     D’autres équations peuvent donc donner des pistes. Certes. Mais il convient au préalable de bien comprendre que ces savants calculs relèvent de la théorie car, jusqu’à présent, aucune preuve expérimentale ou observationnelle n’est allée dans un sens ou un autre, privilégiant, par exemple, une théorie plus que sa voisine. Nous sommes dans le domaine de la spéculation même si celle-ci s’appuie sur des chiffres… Cela dit, on peut avancer cinq hypothèses, évidemment incompatibles entre elles.

 

 

. une contraction de l’univers avant le Big bang

 

     Selon des chercheurs de l’Université de Pennsylvanie, aux USA, on peut parfaitement imaginer qu’avant le Big bang existait déjà un Univers qui se serait effondré sur lui-même en raison de la gravité. Ces scientifiques avancent que cet univers préexistant ayant atteint un certain seuil (une densité critique), il aurait tout bonnement rebondi sur lui-même pour théorie quantique à bouclesdonner naissance au Big bang. Les équations utilisées pour arriver à ce résultat ? La théorie quantique à boucles. En effet, cette dernière explique que lorsque la densité de l’Univers atteint mille milliards de masses solaires dans un espace de la taille d’un proton, la gravitation devient une force de répulsion (et non plus d’attirance) d’où « l’explosion » du noyau en question… Comme on le voit, on repousse les débuts vers un autre univers qui, lui-même, proviendrait probablement d’un autre : dans cette optique, l’Univers sous ses différentes formes aurait toujours existé…

 

 

. les branes

 

     Les scientifiques s’appuient ici sur la théorie des cordes à dix dimensions (voir le sujet : la théorie des cordes ou l'Univers repensé). L’espace-temps possèderait sept dimensions en plus des trois que l’on connaît. De ce fait, notre Univers ne serait qu’une sorte de feuillet à trois dimensions intercalé entre d’autres feuillets analogues, le tout inclus dans un univers bien plus vaste. On appelle ces feuillets (ou membranes) des « branes » d’où le nom de la théorie. Selon les équations utilisées ici, ces branes s’attirent jusqu’à se heurter et provoquer une gigantesque onde debranes.jpg choc dont l’énergie se change en rayonnement et en matière : le Big bang. Lorsqu’une brane s’éloigne d’une autre, elle ralentit mais l’inverse est également vrai : un rapprochement entraîne une accélération puis une contraction juste avant le choc. On comprend dès lors que l’accélération de l’expansion de notre Univers actuel pourrait signifier… une prochaine rencontre.

 

 

. la théorie des trous noirs

 

     Dans ce scénario, l’Univers est d’emblée éternel. Avant existait un « pré-Big bang » où la matière était extrêmement diluée. Celle-ci, peu à peu, a fini par s’agréger (à la manière du nôtre) pour former à certains endroits des trous noirs (voir : trous noirs). Les calculs se fondent, ici aussi, sur la théorie des cordes or que dit celle-ci ? Eh bien que dans chaque trou noir, la densité augmente progressivement jusqu’à atteindre un seuil à partir duquel la matière se « libère » dans un Big bang, prélude à une nouvelle expansion. Notre Univers ne serait donc que la partie interne d’un gigantesque trou noir…

 

 

. le temps infini sans espace

 

     Il s’agit ici d’un scénario extraordinaire s’appuyant sur une variante de la théorie des cordes : la gravité quantique à 11 dimensions. On a déjà évoqué le mur de Planck (avant 10-43 seconde) : dans ce cas de figure, avant le mur, l’ensemble des paramètres de l’espace-temps classique disparaitrait, notamment l’espace, et ne resterait plus que le temps et plus on s’approcherait du point zéro, plus celui-ci s’étirerait… jusqu’à devenir infini, rendant toute approche du point initial impossible !

 

 

. les méta-univers

 

     C’est à Andrei Linde, dans les années 60 que l’on doit l’introduction dans le modèle standard du Big bang de la théorie de l’inflation. En effet, jusque là, un point paraissait impossible à théoriser. Le modèle stipule que notre Univers a environ 13,7 milliards d’années. Or, si l’on regarde dans les différentes directions, on contemple toujours un univers homogène, avec les mêmes galaxies, étoiles, etc., des objets ayant eu à l’évidence une origine commune. Comment cela serait-il possible puisque 13,7 milliards d’années dans un sens puis autant dans l’autre sens, cela fait près de 28 milliards d’années ? Linde suggère que, peu après le temps de Planck, l’Univers a subi une formidable expansion, dépassant la vitesse de la lumière, qui aurait décuplé son diamètre de 1030 en quelques instants. Une donnée admise par l’ensemble des défenseurs du modèle standard.

 

     Ce qui est très intéressant, c’est que la théorie de l’inflation nous meta-univers.jpegapprend aussi que l’Univers serait infiniment plus vaste que celui que nous observons puisqu’une grande partie de l’ensemble serait au-delà de la vitesse de la lumière. En d’autres termes, notre Univers ne serait qu’une toute petite partie d’un méta-univers… qui pourrait engendrer à tout moment de nouvelles phases d’inflation et autant de nouvelles « bulles » (comme la nôtre) dans un univers lui-même infini… Le Big bang ne serait donc qu’un détail dans une histoire sans limite de temps ou de volume.

 

 

 

L’avant-Big bang est-il réellement accessible ?

 

 

     Les équations donnent cinq pistes possibles pour tenter d’expliquer ce qui s’est passé avant le Big bang (et accessoirement le Big Bang lui-même). Est-ce à dire qu’il n’y en a pas d’autres ? Bien sûr que non. Dans un futur proche, d’autres tentatives seront certainement développées : aujourd’hui, j’ai seulement cherché à isoler celles qui paraissent les plus prometteuses.

     Pour terminer ce sujet, deux remarques me paraissent importantes à faire :

 

. ces théories – dont nous n’avons pas, je le rappelle, le moindre début de preuve objective – s’affranchissent toutes de la singularité, ce point zéro originel, en développant l’hypothèse qu’il préexiste bien quelque chose et nous renvoient à un univers infini et éternel. Des univers éternels ? Ces hypothèses ne pourraient-elles pas êtres suscitées par le fait que nos équations flirtent un peu trop avec « l’infini » et le néant mathématiques ? Si cela était le cas, cela pourrait simplement signifier que nos outils ne sont définitivement pas au point et qu’il reste à inventer la physique qui nous permettrait d’y voir plus clair…

 

. D’autre part, on peut se demander si l’on n'aura jamais des preuves objectives de telles constructions intellectuelles puisque, par définition, on ne peut pas observer quoi que ce soit au-delà du rayonnement fossile (et donc lors des 380 000 années de notre Univers). Sur ce point, les scientifiques sont finalement modérément optimistes. Certains d’entre eux pensent en effet qu’il sera peut-être possible de décrypter et d’interpréter les minuscules fluctuations observables sur le fonds diffus cosmologique. Regarder en quelque sorte les traces de ce qui s’est passé avant. Pour cela, il faudra attendre des cartes plus précises de ce rayonnement : c’est tout l’intérêt de la mise en service, cette année, du satellite Planck qui devrait nous fournir une carte bien plus précise que celle que nous possédons déjà. Et s’il nous apportait des informations primordiales (aux deux sens du terme) ?

 (Depuis la rédaction de ce texte, le satellite Planck a effectivement cartographié notre Univers : voir la brêve en annexe).

 

     On le voit, il reste bien des éléments à découvrir, bien des hypothèses à formuler, bien des données à vérifier et c’est ce qui fait, en ce domaine, tout l’intérêt des années à venir.

 

 

 

 

Brêve : le cliché du satellite Planck

 

     Entre juillet 2099 et janvier 2012, le satellite Planck, placé à 1,5 millions de km de la Terre, sur le point de Lagrange L2 (c'est à dire bien à l'abri des radiations solaires), a progressivement cartographié l'intégralité de la voûte céleste. L'image obtenue est la plus précise jamais réalisée du fonds diffus cosmologique, c'est à dire de l'origine de l'Univers. Epoustouflante de netteté et de détails, cette extraordinaire vue de la toute première apparition de la lumière dans le cosmos nous montre ce dernier tel qu'il était 380 000 ans après le Big bang. Ce cliché étant en cours d'exploitation par les scientifiques, nous aurons très certainement l'occasion de revenir sur ce qu'il nous apprend de nos débuts...

 

 

 Sources

. Wikipedia France (fr.wikipedia.org)

. Science & Vie, HS 256, septembre 2011 (www.science-et-vie.com/)

. Futura-Sciences (www.futura-sciences.com/)

 

 

Images

 

1. expansion de l'Univers depuis le Big bang (sources : newzilla.net)

2. Edwin Hubble (sources : astronomes.com)

3. fonds diffus cosmologique (sources : cougst.free.fr)

4. vue d'artiste d'un univers de gravitation à boucles (sources : larecherche.fr)

5.  vue d'artiste d'un univers à branes (sources : chethstudios.net)

6. vue d'artiste d'un méta-univers (sources : paperblog.fr)

 (pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

  

  

Mots-clés : Fred Hoyle - abbé Lemaître - Alexandre Friedman - univers stationnaire - expansion de l'Univers - fonds diffus cosmologique - relativité générale - Edwin Hubble - deep fields - théorie de l'inflation - temps de Planck - mécanique quantique - singularité - théorie quantique à boucles - branes - théorie des cordes - trous noirs - gravité quantique à 11 dimensions - méta-univers

 (les mots en gris renvoient à des sites d'informations complémentaires)

  

  

Sujets apparentés sur le blog

1. les étoiles primordiales

2. la théorie des cordes ou l'Univers repensé

3. Edwin HUBBLE, le découvreur

4. juste après le Big bang

5. les premières galaxies

6. Big Bang et origine de l'Univers

7. mécanique quantique

8. trous noirs

9. théorie de la relativité générale

10. fond diffus cosmologique

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

 

l'actualité du blog se trouve sur FACEBOOK

 

 

 Mise à jour : 9 mars 2023

Voir les commentaires

copyrightfrance-logo17

Articles récents

 POUR REVENIR À LA PAGE D'ACCUEIL : CLIQUER SUR LE TITRE "LE BLOG DE CEPHEIDES" EN HAUT DE LA PAGE 

 

 

Sommaire général du blog : cliquer ICI

 

 

 

 

Fréquentation

à fin mars 2024

 

Visiteurs uniques : 660 571

 

Pages/articles vus : 943 732

 

 

 

Du même auteur, en lecture libre :

 

Alcyon B, roman de science-fiction (alcyon.eklablog.com)

 

Viralité, roman (djeser3.eklablog.com)

 

Camille, roman (djeser4.eklablog.com)

 

La mort et autres voyages, recueil de nouvelles (djeser2.over-blog.com)

 

 

 

Hébergé par Overblog